
 1

AN EXTENSIBLE DATA COLLABORATION FRAMEWORK
BASED ON SHARED OBJECTS

Marvin Goldin
AMSRD-CER-C2-BC-EXP

Fort Monmouth, New Jersey 07703

Timothy Chase
Dept. of Chemistry, Medical Technology and Physics

Monmouth University
West Long Branch, New Jersey 07733

ABSTRACT

Data sharing and collaboration are vital to the suc-
cessful implementation of network-centric warfare. This
paper discusses a novel approach to data sharing and
collaboration based on sharing data objects instead of
just sharing the data itself. Sharing objects permits not
only data sharing, but also the sharing of the methods
required to interpret the data. The net result is a shared
object framework that enables multiple clients to create
data objects locally, drive those objects to an interesting
state and then share the objects and their subsequent fu-
ture state transformations among interested clients. As
described, the system is extensible because clients may
introduce new objects as needed.

1. INTRODUCTION

The concept of network centric warfare (NCW) re-
lies heavily on shared information. NCW translates
information superiority into combat power by effectively
linking knowledgeable entities in the battlespace. Sensor
netting, data fusion and information management tech-
nologies implement the processes for generating better
battlespace awareness but it is being able to collaborate
this information among individuals that is at the heart of
the warfighter’s ability to exploit the enhanced aware-
ness (Alberts, 1999).

As data becomes more sophisticated its sharing be-
comes more difficult. Instead of simply sharing data,
applications using the shared data must also have shared
code to interpret the data. As an example, consider shar-
ing a high resolution military plan that describes the
mission state over the course of the mission. Storage of
the time variant plan state data presents a problem. In
essence, the problem is how to store the values for the
plan state variables as a function of time? In other words,
how does the plan data represent a function such as S =
F(t) where S is the value of the state variable at time t?

Suppose, for example, that the function F represented the
current amount of fuel held by a given unit. The value of
F(t) would represent the fuel held by the unit at any given
time t. How could this be represented in the plan data?
There are two ways in which this can be done. The first
way is by sampling the data and storing the samples. Ny-
quist-Shannon sampling theorem says that for bandwidth
limited functions sampling at twice the highest component
frequency insures that no information will be lost. This
means, however, that data consumers require methods to
recompose the data back into its original form by interpo-
lating between the sample points. The second approach to
storing F is to actually store the method for F itself. This
approach requires that clients have access to the method F
in order to calculate the required values. The net conclu-
sion in either case is that clients using data require shared
methods in order to correctly interpret the data. In short, it
is not enough to share just data. In addition to the data, the
methods to understand the data must also be shared.

In object-oriented programming, one definition of an
object is a collection of data and the set of methods that
manipulate and permit access to the data in the object. This
realization suggests that an approach to the problem of
sharing complex data might lie in a system organized
around sharing objects. We had felt that this pattern might
provide some interesting insights into solutions for the
general problem of collaborating data. As a result, we de-
cided to experiment with this architecture by building a
shared object framework for the development of typical
collaborative tools such as chat and whiteboards. The goal
was to try and construct the framework in such a way that
it had no coupling to the objects being shared. We be-
lieved such an approach would allow the introduction of
new objects without changes to the framework.

The Communications-Electronics Research, Devel-
opment, and Engineering Center (CERDEC) Command
and Control Directorate (C2D) is involved in providing
surrogate command and control (C2) systems for use in
man-in-the-loop (MITL) experiments at various Army

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
An Extensible Data Collaboration Framework Based On Shared Objects

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AMSRD-CER-C2-BC-EXP Fort Monmouth, New Jersey 07703

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002075., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

Battle Lab locations, so we had the unique opportunity to
produce a system and then experiment with it in a so-
phisticated battle simulation.

It has been said that “God made your eyes to plagia-
rize” so our first steps were to examine successful
collaboration systems to see how they addressed the is-
sues associated with sharing sophisticated data. C2D’s
Combined Arms Planning and Execution system
(CAPES) is a good example of such a system and be-
cause it was developed in our own organization it was
available for close study. CAPES provides an environ-
ment in which military planners may collaboratively
develop plans without having to be physically near each
other. The Command Post of the Future (CPoF) is an-
other example of a richly collaborative application
permitting a range of real time information sharing using
text, graphics, charts and maps. Architecturally, some-
what more opaque than CAPES, CPoF demonstrates a
highly integrated collaborative system.

Both CPoF and CAPES make use of similar archi-
tectural patterns to implement collaboration but there are
important differences. Figure 1 shows a simplified

Figure 1. CPoF High-level uForm Sharing

diagram of CPoF’s sharing architecture. Sharing is based
on a data structure called the uForm (Maya). uForms
(pronounced you-form) are uniquely identified collec-
tions of name-value pairs. When a uForm is created it is
given an identifier that is unique across all clients. Cli-
ents make calls to a framework API to access and change
the uForms on the server. Sophisticated client-side buff-
ering makes the operation as efficient as possible.
Changes made to the uForm are collaborated through the
server to all interested connected clients. CPoF stores
virtually everything as uForms including collections of
uForms. This architectural regularity permits virtually
everything to be collaborated. Unlike objects, however,
uForms are purely data and there is no enforced connec-
tion between uForm data and methods that manipulate it.
A client knows how to process data based on the type of

the data. uForms can reference other uForms and this ca-
pability is used extensively within CPoF to describe the
meaning of data through the concept of roles. Code within
clients can inspect the uForm roles and make display and
processing decisions based on what is found. This capabil-
ity is similar to the reflection concept found in some
programming languages such as Java or C#. Although
uForms are not objects because they don’t have methods
associated with them, the way in which CPoF encodes and
shares information exclusively through uForms makes the
uForm an interesting pattern.

CAPES takes a similar, but different approach to solv-
ing the collaboration problem (C2D, 2002). The high-level
CAPES architecture is shown in Figure 2.

Collaboration
Server

CAPES
Plan

Master
Object

CAPES
Client

CAPES
Client

CAPES
Plan
Local
Object

CAPES
Plan
Local
Object

Figure 2. CAPES Collaborative Architecture

As with CPoF, a central server is used but CAPES
changes this design by keeping local copies of the plan
data on each client. The client application makes changes
to the local plan copy, the changes are sent to the master
copy and then forwarded to all interested clients. When
new clients join a collaborative session they are given a
copy of the master plan’s current state from the server.

This approach has a number of interesting features.
First of all, local copies of the plan may be quickly ac-
cessed for read only operations. This is similar to the
buffering scheme provided by CPoF, but provides the ad-
ditional benefit that clients can work in a disconnected
mode if communications facilities are lost. Some problems
with the CAPES approach include the fact that the only
object that is shared is the plan data model (e.g. the ap-
proach is not a generalized object-based approach) and the
fact that some race conditions will result in the various
plan copies becoming unsynchronized. For example, be-
cause the client changes its local copy and then
collaborates the change to other clients, if client A makes a
change at the same time that client B makes a change, A’s
database will reflect the changes in the order A, B while
B’s database will reflect the change in order B, A.

 3

2. CATS

Our implementation of the Collaborative Applica-
tion Tool Set (CATS) attempted to extend good ideas
from both CAPES and CPoF while trying to avoid some
of those systems’ shortcomings. CATS is written in the
C# programming language and is based on the .NET 2.0
Common Language Runtime (CLR). This environment
was selected because of its rich support for software
component management. The .NET CLR provides facili-
ties for object serialization, reflection, custom metadata
and custom proxy generation that are powerful, inte-
grated and (sometimes) easy to use. Being a research
project, in most cases we opted for implementation ex-
pediency rather than real world applicability. This means
that it’s straightforward to develop CATS-based collabo-
rative applications in C#, but if you want to use a non
.NET language for development (can you say Java?)
you’re currently out of luck.

CATS borrows from CPoF in that almost all func-
tionality is provided in the form of shared objects. Early
in CATS’ development, however, we discovered that
effective collaboration appears to require three funda-
mental components: shared objects, messaging and
centralized file storage. We have not yet tried to provide
the messaging and centralized file storage capability
through shared objects, but that is a possible future re-
search topic. In what we believe to be an improvement
over CPoF’s uForms, CATS exchanges serialized objects
and remote method invocations rather than just data.

From CAPES, CATS borrows the idea of maintain-
ing local copies of the shared objects with a master copy
holding the official object state residing on a centralized
server. Unlike CAPES, however, changes to shared ob-
jects are not performed locally but rather are sent to the
server. This means, for example, that when client C
makes a change to a local shared object the object is not
actually changed but instead the change method call is
sent to the server. The server sends the change request to
all clients who have expressed an interest in the specific
object instance. The list of interested clients includes C
who receives the change notification and performs the
required change. The server becomes a sequencing point
insuring that each client receives data change requests
(method invocations) in the same order as do all other
clients. This helps insure that all objects remain synchro-
nized with the server’s notion of the object’s state.

Our basic design goals for CATS included:

• Object based. Shared information would be rep-
resented as objects. Client code gains access to
object data strictly through object interfaces.

• Location agnostic objects. Object code should
not care if it is a local non-shared copy, a local

copy of a shared object or the master copy of a
shared object.

• Object agnostic framework. The framework
should not have special knowledge about objects
that would require its modification when new ob-
jects are introduced.

• Shared/local object reference scheme. Applica-
tion code written in the client should reference
local objects and shared objects in the same way.

The CATS’ high level architecture as shown in Figure
3 meets these goals with various degrees of success.

Figure 3. CATS Architecture.

The system architecture is predicated on the following
.NET capabilities:

• Custom proxies. The ability to generate a proxy
that inserts framework code between a client’s in-
vocation of a method and the method’s actual
execution.

• Object serialization. The ability to convert an ob-
ject’s state to a form that can be written and read
across a communications channel.

• Reflection. The ability to be able to inspect an in-
stance of an object and determine compile-time
attributes at run time. This includes the ability to
discover and call methods.

• Custom metadata. The .NET framework provides
user-extensible metadata that works with reflec-
tion enabling the addition of custom metadata
tags to object methods.

2.1 How CATS Works

The basic idea behind CATS is that an instance of a
shared object is located on the server. In Figure 3 this is
labeled Master Shared Object. Similar to CAPES’ imple-
mentation, the CATS client also maintains a local copy of
the shared object. An important CATS’ feature is that the
object’s implementation is the same on either the server or

 4

the client. The same binary code for the object is used on
both the client and the server. The local copy of the ob-
ject is never directly accessed by the client code. Instead
the client code makes calls to a proxy. The proxy is gen-
erated at runtime by the framework to exactly match the
interface implemented by the “real” object. When ac-
cessing an object, client code can reference the object’s
methods and properties to either get data (read reference)
or put data (write reference). The proxy examines the
client call and if the call is a read, then the proxy directs
the call to the appropriate method on the local copy of
the object. This makes read references efficient so that
GUI-like operations such as screen repaints or scrolling
work with local data. The local proxy/instance may be
thought of as an object-specific buffering scheme.

If the proxy determines that the object reference is a
write operation, then the write is serialized into a mes-
sage and the message is passed to the server. The
message contains the name of the method/property being
called and all of the arguments that are being passed to
the method. The message is, in effect, a serialization of
the method call. When the server receives the message it
executes the method call on the master copy of the object
causing the desired state change on the master copy. The
server then sends the message to every client that has
expressed an interest in that particular shared object. The
list includes the client that originally initiated the opera-
tion. When each client receives the method invocation
message, each executes the proper method on the local
copy of the object and the operation is complete. Using
this technique insures that all of the client’s copies of the
shared objects are synchronized.

One of the benefits derived from using the proxy
scheme is that client code doesn’t “know” if it is refer-
encing a shared object via a proxy or a real local object.
In fact, the framework creates objects by publishing real
local objects. The programmatic steps to create an object
are:

1. Create a local object.
2. Make method calls to set its state as desired.

These calls all execute locally because the ob-
ject is not shared.

3. Publish the object to the server.

The publish step assigns a unique identifier to the
object and serializes the object’s initial state to the
server. The client code continues using the (now shared)
object in the same way as it was using the local object;
only now the object is located on the server and locally
accessed via a proxy. When a new client accesses the
shared object it asks the framework to give it access to
the object. The framework locates the object on the
server, creates a local version for the accessing client,
serializes the current master object’s state into the local

object, notifies the server that the client is interest in the
object and then creates a proxy for the local instance. From
this point on the client accesses the shared object as if it
were a local object.

Borrowing from CPoF, CATS’ framework itself util-
izes shared objects to help provide functionality to
applications. The layered “call architecture” is illustrated
in Figure 4.

Figure 4. CATS Architectural Layers

Figure 4 shows that the shared object framework actu-
ally uses shared objects to provide some of its own
functionality. There are several well-known shared objects
that contain framework information. For example, the
logged in user list is an object that contains a list of users
logged into the system. Any application needing the list of
users can reference this object. The framework itself up-
dates the object whenever a user logs in or out of the
system. All of the mechanisms for any shared object are
available for the logged in user list. In this way CATS
doesn’t need to introduce code uniquely designed to main-
tain its own internal data.

2.2 Chat Example

To better understand how an application uses shared
objects we will consider a simple chat program. The chat
application we developed to run on CATS is typical and
supports features such as lists of users in the chat room,
multi-way chatting and “whispering” for private commu-
nications. The basic CATS UI with a chat window is
shown in Figure 5. The chat application is one of several
collaborative tools in CATS. The current CATS UI is bro-
ken into two screen panels. On the left, as shown in the
figure, is a list of currently visible shared objects. The
demonstration version of CATS implements several differ-
ent types of objects such as chat, whiteboard and shared
files. Object names can be hierarchical. For example, the
1stCAB folder in the figure has both fires and intel chat
rooms. Users can access the shared objects by dragging
them from the left panel to the right panel. In Figure 5, the
Example chat room has been dragged into the right side so
the user can interact with it.

 5

Figure 5. CATS Is a Multi-document UI

The resulting chat room is pretty typical and provides a
list of chat members, an area to enter data and the list of
on-going chat messages. The room is implemented as
shown in Figure 6.

UI Chat Room
Shared Object

Text
Change
Events

Figure 6. Chat Room Shared Object

The chat room is an instance of a shared chat room
object that maintains a list of chat messages and a list of
users who are currently logged into the room. The chat
UI updates the room object instance by making calls to
the room’s add message method. The UI receives notices
of changes to data in the room via a change event. Be-
cause the object is shared, any changes made to the room
by any client results in all of the clients currently access-
ing the room being updated. Because the room is really
implemented on the server, the server’s master copy of
the shared object maintains room’s state. This provides
the unexpected (and useful) feature of being able to see
the results of previously on-going chatting immediately
upon accessing the room. In other words, when the user
accesses a room, the system serializes the room’s current
state which contains previous chat messages.

All shared objects in CATS are derived from a
common base class providing methods for typical object
functions such as a method that is called whenever the
object is accessed by a client. In the case of chat, the chat
room object uses this feature to keep track of the users
currently accessing a given chat room.

2.3 Whiteboard Example

Implementation of a whiteboard in CATS demon-
strates an additional set of interesting problems. The
CATS whiteboard is pretty primitive, but serves as an
effective model for a more sophisticated implementation.
In many ways a whiteboard is similar to a chat program,
except that instead of chat messages being collaborated

the whiteboard collaborates the drawable objects appearing
on the board.

Figure 7. CATS Whiteboard Example

Figure 7 shows a typical CATS whiteboard being used to
create a user-defined display. The user has created several
indicator shapes (in this case just colored circles). The
shapes may be changed to indicate a change in logistical
readiness, for example.

Just as with the chat application, the whiteboard appli-
cation is based on a shared object implementing a
container which, in this case, holds the drawables. There
are methods to add and remove drawables from the white-
board and as with the chat example, the UI code calls these
methods and, in turn, is called by the instance of the
whiteboard object when there are changes made by other
clients so that the UI may be updated. This scheme, how-
ever, presents an interesting problem. CATS is object
based, but there can be no address references to objects. In
other words, the collection of objects representing the
drawables each must have a unique identifier, but the iden-
tifiers cannot be addresses. The red circle in the figure, for
example, will have a different address in each client that
displays the whiteboard so addresses cannot be used to
identify specific instances of objects within containers.

To solve this problem, we introduced the ability to
adorn methods and properties in shared objects with cus-
tom metadata. .NET supports the notion of custom
metadata in its custom attribute feature. We defined sev-
eral custom attributes to give the framework additional
information about the intended use of the method or prop-
erty. In CATS, the custom metadata is largely concerned
with where the code for the method is to be executed. We
can, for example, specify that a method, even in read
mode, is to be executed on the server rather than in the
local copy of the object.

This concept was used to generate unique IDs for the
drawable objects in the whiteboards. The idea was to gen-
erate a guaranteed unique identifier for each drawable. The
drawables could then be referenced using that ID and the
references would be valid across all clients. A simple
method to generate IDs is part of the whiteboard object.
The code for the method is shown in Figure 8.

 6

[Remote]
[DontCollaborate]
public int GetObjID() {
 return ++NextID;
}
private int NextID = 0;

Figure 8. Code to Generate IDs

The [Remote] adornment indicates to the client proxy
that this routine must be executed on the server. Calling
the GetObjID method from any client via the proxy
will result in a message being sent to the server. The
[DontCollaborate] indicates to the server version
of the object that the method invocation should not be
collaborated to other clients. The net result is that the
GetObjID method will be executed on the server for
any client call which will result in unique IDs being gen-
erated.

The ability to provide the custom metadata tags for
methods and properties is an important feature in the
CATS framework and helps insure that object code can
be the same on both the client and the server. This may
be thought of as a way of extending reflection. Because
the CATS framework is loosely coupled with the objects
it manages, new objects can be added to the application
without having to change the underlying framework. The
CATS framework “understands” the objects by using
reflection to examine the object in order to figure out
how the object is to be used. The custom metadata pro-
vides a way for the programmer to communicate with the
framework.

2.4 Workspaces

Because CATS is object-based we found that we
could easily implement collections of shared objects
which were themselves shared. This provides a useful
workspace concept that effectively mimics CPoF’s
pasteboard feature. (Maya, CPoF)

Figure 9. Workspace with Chat and Files

Users can assemble workspaces (collections of shared
objects) which are then themselves shared. A good exam-
ple is a collection of shared files along with a chat room
describing their use. In CATS, the workspace is a shared
object that is a container for other shared objects. The
workspace object contains a list of object identifiers and
information about how the objects should be presented in
the workspace. This information includes the size of the
window displaying the object and the location of the win-
dow within the workspace.

Figure 9 shows a workspace with a chat room and a
collection of shared files. Shared file collections are an-
other type of CATS shared object that can contain a list of
files accessible to any client. The workspace in Figure 9
demonstrates how shared objects may be aggregated to-
gether to form higher order shared constructs. One
problem that occurs as a consequence of workspace aggre-
gation of shared objects is the behavior when an object is
deleted. Currently when objects are deleted all of their
references are deleted as well. This means, for example,
that when an object in a workspace is deleted, the resulting
workspace has a visual “hole” in it where the object used
to be. A different approach might be to provide reference
counts so that objects aren’t deleted until all references to
them are also deleted.

3. EXTENSIBILITY

The CATS’ capability set is fairly straightforward to
augment through the addition of new objects. As it cur-
rently works, the CATS application contains two
executable files: the server and the client. Both the client
and the server are required to have access to .NET assem-
blies that contain the definition for the objects. .NET’s
binary object deployment scheme is based on assemblies
that behave much like DLLs.

Extensibility is still not as clean as we would like it
for two reasons. First are the problems associated with the
deployment of new objects. When a programmer develops
a new object, the object must be provided to all client loca-
tions. A better approach would be to have the object
loaded on the server and to then have the code for the ob-
ject automatically deployed to the clients upon reference.
The new MS “One Click Deployment” could be used to
implement such a scheme.

The second problem with extensibility comes from
how much the system still has to know about the objects. It
is true that the framework inspects the objects using reflec-
tion and much of the work for integrating objects into the
CATS application is done at run time, but there are details
that are still not a clean as we would like them. For exam-
ple, client menus need to be hand modified in order to
accommodate new object types. A better approach would
be to define interfaces each object implements which de-

 7

scribes the menus and icons that will be used to allow the
user to gain access to the objects.

Apart from these two short comings, however, the
CATS system is relatively easy to extend. One aspect of
extensibility that has proven very useful is the fact each
object brings along its own implementation. This means
that no client code need be developed to access the
shared data that the object represents.

Figure 10. Viewers Display Objects

Although CATS objects simply represent data and
as such can be used by any application wishing to access
that data, we found it useful to optionally couple viewers
to the data. One of the methods that each shared object
supports is a GetViewer method. This method returns
a list of viewer objects (.NET controls) that understand
how to display the contents of the object. This technique
permits users to easily view data objects and is used ex-
tensively in the creation and display of workspaces.
Dropping an object into a workspace or accessing an
object through the CATS UI gives the user access to the
appropriate viewer.

Each data object may have any number of selected
viewers displaying its state. This means that a single ob-
ject may support different views. Spot reports, for
example, could be viewed geospatially on a map or they
could be viewed in a spreadsheet. CATS could support
both of these views. In addition, multiple views of the
same object are updated at the same time when changes
occur to the shared object.

In retrospect, the connection between viewers and
data objects may have been made too tightly coupled. A
better implementation might have been to have shared
objects support multiple interfaces with each interface
defining the semantics of that particular type of data.
Viewers would be able to display any object implement-
ing a specific interface.

4. ADDITIONS TO SHARED OBJECTS

The CATS system was recently used for a logistical
Computer Assisted Map Exercise (CAMEX) at Combat

Service Support Battle Lab (CSS-BL). In preparing for the
exercise, we developed several collaborative applications
based on the CATS framework. These applications in-
cluded chat, email, and file sharing. Based on this
experience, we extended the CATS shared object system to
include two features in addition to shared objects. These
were:

1. Central file storage. Originally, we had thought that
we could create shared objects individually represent-
ing files, but this quickly became unwieldy. Instead,
we opted for a scheme by which files could be moved
to the server, assigned a unique id and then be re-
trieved by any client. This effectively provides a
URL-like construct for files that proved useful for file
attachments and for file sharing objects.

2. Messaging. Although messaging could be imple-
mented using shared objects, we found that given our
hub-spoke server pattern, it was more efficient to in-
troduce messaging to the framework. Our messaging
system models email in that it provides the ability to
send a message object to one or more currently con-
nected users. Messaging is useful for instant message
invitations, whispering, and email.

The net result is that the current CATS system pro-
vides all three collaborative features: Shared objects,
centralized file storage and messaging. Given these basic
capabilities, we found implementing collaborative applica-
tions to be straightforward. The programming model is
easy to understand and being able to create local objects
that are then published as shared objects provides the abil-
ity to get the object in the proper state before sharing it
with others. Arranging objects on a map or whiteboard
before sharing is a good example of where this is useful.

5. CONCLUSION

The CATS system has proven useful in an experimen-
tal environment and has shown that the shared object
paradigm can be used to implement a class of collaborative
applications with relative ease. Because each object brings
with it code to interpret its data, the introduction of new
objects extends the client applications that access them
without the need to develop duplicative code. In addition,
the objects encapsulate the data thereby making changes to
the internal data representation much easier. We could, for
example, alter the way in which chat data is stored without
altering the client code that uses the data. We could, for
example, replace the simple text representations of chat
messages with a rich text version if we wanted chat to sup-
port different fonts and colors.

The pattern implemented by CATS is an interesting
one that we will continue to investigate but as is always the
case, successes lead to more questions. The CATS imple-

 8

mentation suggests that there is room for additional re-
search in how to more effectively control access to the
shared objects and the types of data they contain. This
could include addressing the following issues:

• Dynamically object download. CATS clients need to
have the libraries containing object code present on
their computers. An interesting enhancement would
be to download object definitions on demand. This
would make extensibility even more flexible.

• Controlled namespaces. The current CATS system
places all objects in a single namespace. It would be
interesting to explore how to control access to ob-
jects by developing multiple namespaces accessible
based on user security credentials.

• Object ownership. CATS currently treats all shared
objects as common property. This means, for exam-
ple, that if Marv creates a chat room object, Tim
could delete it. Additional work needs to be done to
create a sense of ownership for objects and hierarchy
of users to control the ownership.

• Object Locking. There is no current method to lock
objects. As a result, all operations on objects need to
be completed in a single method call. A scheme
needs to be developed to permit an object to be
locked and released. This scheme needs to be robust
against the loss of a client currently locking an ob-
ject.

• Transactions. Any sophisticated collaborative applica-
tion needs some form of transaction processing. This
concept is closely aligned with locking. In the CATS
context it would mean the ability to treat multiple
method calls as a unit that would be deemed success-
ful or not. If not successful, the call would have to be
reversed. CATS currently has no facilities for transac-
tional object usage.

• Live data feeds. Currently, CATS applications are
largely based on humans entering data (chat rooms,
whiteboards, etc.) It would be interesting to explore
ways in which live data feeds could be published with
CATS. We would envision objects that contain vari-
ous elements of a Common Operating Picture (COP)
that are updated by COP reception software and pub-
lished through changes made to the shared objects.

REFERENCES

Alberts, David S., 1942: Network centric warfare: devel-
oping and leveraging information superiority, CCRP
publication series.

Maya: Visage Design Notes
http://www.maya.com/visage/visage_des/visnote.html

Maya: CPoF Description PDF
http://www.mayaviz.com/web/visualization/download
s/mayaviz_cpof_description.pdf

Command and Control Directorate (C2D): CAPES Users
Manual.

